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Many weakly non-linear structures exhibit normal modes that are analogous to linear
modes of linear oscillatory systems. As in the testing of linear modal systems, optimal
sensor and actuator placement is important for obtaining the best test results. Such optimal
placement is also important in control. This paper addresses this issue by extending the
concepts of modal controllability and observability norms developed for linear systems to
weakly non-linear systems that exhibit non-linear normal modes.
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1. INTRODUCTION

The concept that non-linear modes with non-linear modal equations exist for some set of
non-linear systems has been accepted intuitively by many for quite some time. It was not
until 1964 when Rosenberg presented the first paper on non-similar normal modes that
it became possible to solve even the simplest non-similar normal mode system [1]. Many
perturbation methods have been developed to approximate the deviation of a non-linear
mode from a corresponding linear mode. Other methods [2, 3] showing the potential for
mode bifurcation in strongly non-linear systems have been developed as well. Here only
weakly non-linear systems in which the non-linear modes are non-linear extensions of the
linear modes of the linearized system are considered. Thus, at low amplitudes, these results
reduce to those of a purely linear analysis. Although algebraically tedious, this method
lends itself to programming using algebraic manipulation packages such as Mathematica8
[4], MAPLE8, and MACSYMA8. The following applies the invariant manifold method
of Shaw and Pierre [5] to find the modal forces acting on non-linear modal equations for
weakly non-linear systems to which their method is applicable.

2. AN OVERVIEW OF NON-LINEAR NORMAL MODES

Most dynamicists are, in general, comfortable with the notion of a linear normal mode.
The response of a system which is moving in a linear normal mode can be written in the
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vector form

x(t)= x=t0 e−t/t sin (vt+F) (1)

where x=t0 is the mode shape or the spatial part of the modal dynamics, t is time, t is the
time constant at the mode (infinity for the undamped system), v is the natural frequency
of the mode, and F is a phase angle.

Unlike the linear normal mode, non-linear normal modes are not quite as readily
accepted. Non-linear normal modes are defined to be either ‘‘similar’’ or ‘‘non-similar’’.
A similar non-linear normal mode is one in which shape is not dependent on the modal
amplitude, and thus is ‘‘similar’’ to a linear mode. In a ‘‘non-similar’’ non-linear normal
mode, the mode shape is not linear. For instance, a two-degree-of-freedom system could
have the mode shapes x2 = f1(x1, ẋ1) and ẋ2 = f2(x1, ẋ1).

When a system is moving in a mode it moves along a ‘‘modal curve’’. For a
modally damped system, the distance traveled along the modal curve decreases with
each cycle and the modal curve can change with the amplitude of oscillation. Note
that for a conservative system the modal curve is dependent on the modal amplitude
as well, but since the total energy remains constant, the modal amplitude remains
constant, and the modal curve will remain constant for all time. A non-modally
damped system moving in a single mode will not follow the same line in both
directions but will instead follow a curved trajectory which spirals toward static
equilibrium. This curved trajectory envelopes what would be the undamped modal
curve.

The existing definition (Vakakis, [6, p. 8] and Rosenberg [1]) for a non-linear normal
mode states that a discrete N-degree-of-freedom system is oscillating in a normal
mode if all of the motions are periodic of the same period, all of the co-ordinates
reach their extreme values at the same time, and for any given amplitude of oscillation
the co-ordinate displacements can be related by a functional relationship of the
form

xi = fi (u(t)), (2)

where xi is the displacement of the ith co-ordinate, u is the modal displacement, and
fi is the relationship between them. The definition is not general in the sense that the
co-ordinates may not reach their extreme simultaneously under certain damping
conditions. These conditions are still not understood well and are analogous to the
modal damping conditions for linear systems [7]. Shaw and Pierre [5] demonstrate that
the modal curve is dependent on the modal velocity as well as the modal displacement.
In conservative systems the modal velocity contribution may be eliminated by applying
conservation of energy [8]. However, equation (2) must still be dependent on some
quantity other than the modal displacement and thus the existing definition is lacking.
A simple example of a system oscillating in a modally damped motion is a
single-degree-of-freedom mass spring system with velocity squared damping. Each cycle
of the motion will exhibit a slightly different period during the decay. Also, complex
modes of linear systems are not modes by this definition of non-linear normal modes
since the motion of the system is not in unison. This is accounted for by Shaw and
Pierre [9] who developed the capability of determining the non-linear modal equivalent
to the linear complex mode. They redefined a normal mode as ‘‘a motion which takes
place on a two-dimensional invariant manifold in the system’s phase space. This
manifold has the following properties: it passes through a stable equilibrium point of
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the system and, at that point, it is tangent to a plane which is an eigenspace of the system
linearized about the equilibrium.’’ In order to provide consistency with linear terminology
and improve the definitions of non-linear modes, the following definitions were proposed
by Slater and Inman [10]:

Definition one: a system is oscillating in a normal mode if the motion of any
point (ux̂ , uŷ , uẑ ) in three-dimensional space (x̂, ŷ, ẑ) can be described by the
equation

&ux̂ (x̂, ŷ, ẑ)
uŷ (x̂, ŷ, ẑ)
uẑ (x̂, ŷ, ẑ)'= &fx̂ (u(t), v(t))

fŷ (u(t), v(t))
fẑ (u(t), v(t))'. (3a)

where (x̂, ŷ, ẑ) represents the location of the point on the structure in three-
dimensional space, ux̂ , uŷ and uẑ represents the deflections in the x, y, and z directions, and
fx̂ , fŷ and fẑ relate the deflections to the modal co-ordinates u and v= u̇. This represents
the two-dimensional invariant manifold described by Shaw and Pierre [5].

Definition two: if the function fî relating the displacements uî to the modal co-ordinates
are linear and the modal equations in u and v are linear then the mode is a linear normal
mode.

Definition three: if the functions fî relating the displacement uî to the modal co-ordinate
are linear and the modal equations in u and v are non-linear then the mode is a similar
non-linear normal mode. This corresponds to the definition put forth by Rosenberg [1] that
if the modal curves corresponding to a non-linear normal mode are straight, then the mode
is called ‘‘similar.’’

Definition four: if the functions fî relating the displacements uî to the modal co-ordinate
are non-linear then the mode is a non-similar non-linear normal mode. This
corresponds to the definition put forth by Rosenberg [1] that if the modal curves
corresponding to a non-linear normal mode are not straight, then the mode is called
‘‘non-similar.’’

Definition five: if the trajectory of a non-linear normal mode passes through static
equilibrium it is an equal phase non-linear normal mode. For a linear normal mode this
type of mode is usually called a ‘‘real’’ mode.

Definition six: if the trajectory of a non-linear normal mode does not pass through static
equilibrium it is a ‘non-equal phase non-linear normal mode. In a linear system this type
of mode is called a ‘‘complex’’ mode.

The following sections describe the method developed by Shaw and Pierre [5] for
determining non-linear normal modes. As will become evident, the method allows for the
solution of non-linear normal modes which were previously undefined by the Rosenberg
definition.

3. NORMAL MODES OF NON-LINEAR SYSTEMS

The method used for determining the non-linear normal modes of the system is the
method of Shaw and Pierre [5]. Readers are referred to this work and others
[3, 6, 8, 9, 11–17] for determining non-linear normal modes.

Using the same notation as Shaw and Pierre [5], the displacements and velocities of a
system, z=[x1, ẋ1, x2, ẋ2, . . . , xN , ẋN ]T, is equal to [x1, y1, x2, y2, . . . , xN , yN ]T, the motion
in a single non-linear normal mode, and can be written as a function of the modal
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displacement, u, and the modal velocity, v, as

K L FK L K Lx1 1 0 0 0
G G GG G G Gy1 0 1 0 0
G G GG G G G

x2 a12 a22 a32u+ a42v a52vG G GG G G G
y2 = b12 b22 + b32u+ b42v b52vG G gG G G G

G G GG G G G.
.
.

.

.

.
.
.
.

.

.

.
.
.
.G G GG G G G

xN a1N a2N a3Nu+ a4Nv a5NvG G GG G G G
yN b1N b2N b3Nu+ b4Nv b5Nvk l fk l k l

K L J0 0
G H H

0 0G H H
a62u2 + a82v2 a72u2 + a92v2 + · · · uG H H

+ b62u2 + b82v2 b72u2 + b92v2 + · · ·
K
k v

L
l , (4a)G H h

G H H.
.
.

.

.

.G H H
a6Nu2 + a82v2 a7Nu2 + a9Nv2

G H H
b6Nu2 + b8Nv2 b7Nu2 + b9Nv2k l j

or more compactly as

z=m$uv%=[m0 +m1(u, v)+m2(u, v)+ · · · ]$uv%, (4b)

where u and v are the modal displacement and velocity, m is a 2N×2 matrix and m0, m1,
and m2 are also 2N×2 matrices. The matrix m0 is the linear component of the non-linear
modes and m1 and m2 represent the quadratic and cubic terms, respectively. This
representation is not unique but is used to facilitate co-ordinate transformation later.

The matrix m0 represents the mode shapes common to linear systems. For a linear
system, all other matrices mj are zero. For the linear undamped or modally damped system,
the cross terms a2i and b1i are zero while a1i = b2i is the usual amplitude ratio relating the
ith-degree-of-freedom to the modal amplitude. For a normally damped system, the cross
terms are generally non-zero and thus represent the effect of complex modes in terms of
real numbers.

Now the complete non-linear modal matrix M can be assembled from the modal vectors
m. The modal matrix M(w) is then

M(w)= [1m 2m 3m . . . Nm], (5)

where im represents the modal vector for the ith mode and w=[u1, v1, u2, v2, . . . , uN , vN ]T,
where ui and vi are the modal displacement and velocity, respectively, for the ith mode.
The complete transformation from modal to physical co-ordinate can now be written

z=M(w)w=M	 (w) (6)

The matrix M(w) can be subdivided in the same manner as the vector m(w) was in equation
(4b). This gives

M(w)=M0 +M1(w)+M2(w). (7)
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If one were to write out M(w) in general form, the coefficients aij and bij will in general
be different for each mode. It is suggested that the notation aijk and bijk be used where the
index k represents the mode number. The importance of this form will become apparent
in the next section.

4. TRANSFORMATION FROM PHYSICAL TO NON-LINEAR MODAL CO-ORDINATES

It must be made clear that these transformations are an extension of linear theory but
that superposition does not apply in the linear sense. The non-linear co-ordinate
transformation is analogous to the well known linear transformation only in that it allows
a multiple-degree-of-freedom system to be viewed as a number of simpler
single-degree-of-freedom systems. The non-linear co-ordinates are curvilinear and
independent, forming basis co-ordinates for the non-linear state space. They are
guaranteed to be locally orthogonal only at origin where they reduce to the linear modes.
The best proof of the validity of this technique is a set of Poincaré maps demonstrating
the lack of any other stable non-linear normal modal curves (not stability of the non-linear
modal equation). However, weakly non-linear systems (i.e., those in which the linear terms
are dominant) do not exhibit more than n non-linear modal curves, n being the number
of degrees-of-freedom. Vakakis [3] has shown that even a minuscule linear stiffness
component in each stiffness term destabilizes the modal lines resulting from bifurcation
of the normal modes.

These single-degree-of-freedom systems can be solved and their solutions combined via
the non-linear co-ordinate transformations to yield the total system dynamics. For linear
systems, the transformation between modal and physical co-ordinates is given by the
matrix M0. The transformation from the physical to the modal co-ordinate for the
non-linear system is not the same as the transformation from the modal to the physical
co-ordinates due to the modal amplitude dependence of the transformation. For the
transformation from modal to physical co-ordinates, it is assumed that the modal
amplitudes are known. Since the transformation matrix is written in terms of the modal
amplitudes, the transformation can be carried out (see equation (6)). In making the
transformation from physical to modal co-ordinates the matrix M(w) cannot simply be
inverted in order to accomplish the transformation because the modal amplitudes are not
known and therefore M(w) cannot be evaluated. The transformation method developed
by Shaw and Pierre [5] for systems with only cubic non-linearities is shown below (a more
general method can be seen in the paper by Shaw and Pierre).

By beginning by premultiplying equation (6) by M(w) and expanding the inverse yields

w= {M0 +M2(w)}−1z= {I+M−1
0 M2(w)}−1M−1

0 z

= {I−M−1
0 M2(w)}M−1

0 z+(I+M−1
0 M2(w))−1(M−1

0 M2(w))2M−1
0 z (8)

Next, the fourth order term (the second term) is dropped for the sake of simplicity. This
yields

w1 {I−M−1
0 M2(w)}M−1

0 z. (9)

The right hand side still has a dependency on w. This can be remedied first by substituting
equation (9) for w into itself, i.e.,

w= {I−M−1
0 M2({I−M−1

0 M2(w)}M−1
0 z)}M−1

0 z. (10)
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Then, since M2 is quadratic in its argument, the leading order argument is M−1
0 z and the

dependence on w is pushed on to higher order terms. This results in the transformation

w= {I−M−1
0 M2(M−1

0 z)}M−1
0 z=N(z)z=N	 (z), (11)

which is correct up to cubic terms in z.
The matrix N(z) now represents the transformation from physical to modal co-ordinates.

Like the co-ordinate transformation matrix M(w) it can be broken into terms of different
order, i.e.,

N(z)=N0 +N1(z)+N2(z), (12)

where N0 represents the linear part of the transformation, N1(z) the quadratic part of the
transformation and so on.

5. TRANSFORMATION OF NON-LINEAR STATE EQUATIONS FROM PHYSICAL TO
MODAL CO-ORDINATES

Motivated by the use of the state space representation in control theory, the non-linear
state space equations can be written in physical co-ordinates as

ȧ=A�(z, u)=A	 (z)+B(z)ûż, y=C	 (z, ż), (13, 14)

where A	 (z) is the state function vector and C	 (z, ż) is the output function vector, and u

represents a vector of arbitrary excitations. Taking the derivative of equation (6) with
respect to time and applying the chain rule yields

z̃=(1M	 (w)/1w)ẇ, (15)

Substituting equations (6) and (15) into equations (13) and (14) gives

ẇ=(1M	 (w)/1w)−1A	 (M	 (w), u)=A	 m (w)+ um (w, u) (16)

and

y=C	 (M	 (w), (1M	 (w)/1w)ẇ)=C	 m (w, ẇ), (17)

where um (w, u) represents the amplitude dependent modal forces, A	 m (w) represents the
modal functions, and C	 m (w) represents the observation function in modal co-ordinates.

6. TRANSFORMATION OF NON-LINEAR STATE EQUATIONS FROM MODAL TO
PHYSICAL CO-ORDINATES

In transforming the equations from modal co-ordinates to physical co-ordinates, the
same procedure is used as in the previous section. The equations of motion in modal
co-ordinates are given by

ẇ=A	 m (w)+ um (w), y=C	 m (w, ẇ), (18, 19)

where um (w) represents a vector of arbitrary modal forces. From equation (11),

w=N	 (z), (20)

Taking the time derivative and applying the chain rule to equation (20) gives

ẇ=(1N	 (z)/1z)ż, (21)



   423

where 1N	 (z)/1z is the Jacobian of N	 (z) with respect to z. Substituting equations (11) and
(21) into the modal equations of motion and premultiplying by (1N	 (z)/1z)−1 yields the state
equations in physical co-ordinates as

ż=(1N	 (z)/1z)−1A	 m (N	 (z))+ (1N	 (z)/1z)−1um (N	 (z))=A	 '(z, u) (22)

and

y=C	 m (N	 (z), (1N	 (z)/1z)ż)=C	 '(z, ż). (23)

Here the prime symbol represents the possibility that the transformation does not allow
the true equations of motion to be recovered in transforming them from modal to physical
co-ordinates. For example, if a power series approximation for the modes is used, as
suggested by Shaw and Pierre, then for practical purposes the series must be truncated for
most problems. Since the modes are an approximation of the true modes, only an
approximation of the true modal equations will be found. Here the ‘‘true’’ modal equations
and the approximation of them have not been distinguished since in this work they will
always be derived from the equations of motion using a power series and thus will in
general be approximate, the exception being similar normal modal systems. Since the
equations of motion are derived in physical space and they can also be found again by
the transformation from modal co-ordinates to physical co-ordinates it is important to
point out that the physical space equations of motion derived from the modal equations
will not be as correct as when derived from first principles. However, the backwards
transformation (from modal to physical co-ordinates) can thus be useful in determining
how accurate the transformations are.

7. MODAL CONTROLLABILITY OF A NON-LINEAR NORMAL MODAL SYSTEM

Considering linear controllability, the ideal controllability case is that in which each
modal equation can be excited individually. If the force vector ûz is written

ûz =Pum (w)ûmeven , (24)

where ûmeven is an N×1 vector of independent modal forces and Pum (w) is an N×N matrix
defined as

Pum (w)=B(M	 (w))−1
even (1M	 (w)/1w)even , (25)

then the non-linear normal modes are individually controllable. Only the even rows and
columns of the matrices are considered because the odd numbered rows and columns
represent identity statements which are a result of writing the second order equations of
motion in first order form. In order for equation (25) to have a solution, the matrix
B(M	 (w))even must be non-singular. Since this criteria will seldom be met, a more useful way
to look at the controllability of a system is to look at controllability norms similar to those
defined by Hughes and Skelton [18], Hamdan and Nayfeh [19], and Takahashi et al. [20]
for linear systems.

Just as in linear systems, it is difficult to obtain a useful meaning from a controllability
norm if the inputs are not normalized. Thus a matrix Pn is defined for the non-linear system
identical to the linear system such that

Pni ,i =1/max(ûi ) (26)
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and Bmn (w) and ûn defined such that

(1M	 (w)/1w)−1B(M	 (w))ûz −[(1M	 (w)/1w)−1B(M	 (w))P−1
n ][Pn ûz ]= [Bmn (w)][ûzn ], (27)

where un represents the normalized force vector and Bmn (w) represents the control input
matrix. The element Bmnq ,r (w) represent the scaling of the rth input force to the qth mode.
Note that Bmnq,r (w) represents the element of Bmn (w) in the 2qth row and rth column. Thus

Cq,r = =Bmnq ,r (w) = (28)

is defined to be the controllability norm of the qth mode from the rth input. This norm
also represents the maximum force which may be applied to the rth mode from the qth
input. It is also possible to define the controllability norm of the qth mode from set R of
inputs. This is given by

Cq,R =(Bmnq ,r (w)BT
mnq ,R

(w))1/2. (29)

For the case of repeated modes, the matrix Bmnq ,R (w) can be defined to be the Rth columns
and the 2qth rows (corresponding to the qth mode), of the matrix Bmn (w). The modal
controllability norm is then given by

Cq,R =det(Bmnq ,R (w)BT
mnq ,R

(w))1/2Nq, (30)

where Nq is the multiplicity of the qth mode. Note that this definition breaks down in the
absence of pure modal motion and thus becomes an approximation since the modal
equations are not completely decoupled. For a linear system, these results collapse to the
results of Hughes and Skelton [18].

8. MODAL OBSERVABILITY OF A NON-LINEAR NORMAL SYSTEMS

A system is said to be ideally observable if from the outputs of the system, all of the
states of the system can be determined. Thus the inverse function

w=Q	 (ŷ, ûz ) (31)

is defined such that

ŷ=C	 m (Q	 (ŷ, ûz ),
.
Q	 (ŷ, ûz )). (32)

If a function Q	 (ŷ, ûz ) can be found which satisfies equation (32) then the system is said
to have ‘‘ideal observability.’’ Since this will not be possible in the majority of systems it
is useful to quantify how observable each mode is from each sensor. In Slater [21] the
modal controllability for a linear system was defined based on the sensitivity of y to the
modal vector w after scaling the output equation with respect to the sensitivities of the
sensors. The same arguments for scaling the linear output equation hold for the non-linear
output equation. Thus, the output equation (14) becomes

ŷn =C	 mn (w, ûz ), (33)

where ŷn =P−1
ncn ŷ and C	 mn (w, ûz )=P−1

ncn C	 n (w, ûz ) and P−1
ncn is a diagonal matrix consisting of

the sensitivities of the sensors. The sensitivities of ŷn to w is the Jacobian of ŷn with respect
to w:

S(w, ûz )= 1ŷn /1w= 1C	 mn (w, ûz )/1w. (34)



k = 1 + 0.5x2

m

1

x1

k = 1 k = 1

x2

m
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The observability of the ith-degree-of-freedom the rth sensor may then be defined as

O�r,i = =Sr,i (w, ûz ) =, (35)

as in the linear system. This definition, however, neglects the detrimental effects of a sensor
from which the readings are an even function of a mode. For example, an accelerometer
sensing radial acceleration of a rotating shaft can sense rotation but cannot determine the
direction of the rotation. Depending on the purpose of the output, a more useful norm
might be

O�oddr ,i = =S�r,i (w, ûz ) =, (36)

where

S�(w, ûz )= 1
2(S(w, ûz )+S(−w, ûz )). (37)

Defining the norm in this fashion causes only the odd part of the output to be considered
in the observability norm. A gross measure of observability from the sensors R can then
be defined as

O�R,i =(S�R,i (w, ûz )TS�R,i (w, ûz ))1/2, (38)

where S�R,i (w, ûz ) is a vector containing the Rth element of the ith column of
S�(w, ûz ).

9. EXAMPLE

Consider the two-degree-of-freedom system of Figure 1 where only the second degree
of freedom can be actuated. The equations of motion for the system are then

K L K L K Lẋ1 y1 0
G H G H G H

ẏ1 −2x1 −0·5x3
1 + x2 0G H G H G H

ẋ2
=

y2
+

0
ûz

G H G H G H
ẏ2 x1 −2x2 1k l k l k l

and

ŷ= Iz.

Using the method of Shaw and Pierre [5], the equations of motion in modal

Figure 1. A two-degree-of-freedom oscillator with a cubic stiffness.
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co-ordinates are

K L K L K Lu̇1 v1 ûm1

G H G H G Hv̇1 −u1 − 1
3u

3
1 + 1

4u1v2
1 − 3

4u
2
1u2 − 3

4u1u2
2 ûm2G H G H G H ,

u̇2
=

v2
+

ûm3G H G H G H
v̇2 −3u2 − 4

13u
3
2 + 3

52u2v2
2 − 3

4u
2
1u2 − 3

4u1u2
2 ûm4k l k l k l

where the modal control forces are

ûm1 =−ûm3 = (0·125u1v1 +0·028u2v2)ûz

and

ûm2 =−ûm4 = (−0·500+0·0577u2
2 −0·188v2

1 +0·0433v2
2 )ûz .

The output equation is given by

K Lu1 + u2

G Hv1 + v2

G Hŷ=M	 (w)=
u1 − u2 +0·1667u3

1 +1·923u3
2 +0·25u1v2

1 +0·5769u2v2
2

,
G H

v1 − v2 +0·25v3
1 +0·05769v3

2 +0·2308u2
2v2k l

mode 1 is given by

x1 u1K L K L
G H G Hy1 v1

G H G H
x2

=M	 (w) =u2 =0,v2 =0 = u1 + 1
6u

3
1 +0·25u1v2

1
,

G H G H
y2 v1 +0·25v3

1k l k l

and mode 2 is given by

x1 u2K L K L
G H G Hy1 v2

G H G H
x2

=M	 (w) =u1 =0,v1 =0 = −u2 +0·1923u3
2 +0·5769u2v2

2
.

G H G H
y2 −v2 +0·05769v3

2 +0·2308u2
2v2k l k l

From equation (28) the matrix of amplitude dependent controllability norms is given as

0 0

0 (0·500+0·0577u2
2 −0·188v2

1 +0·0433v2
2 )G

G

G

G

G

F

f

G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

J

j

C�=abs
0 0

0 −(0·500+0·0577u2
2 −0·188v2

1 +0·0433v2
2 )
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and from equation (35) the matrix of amplitude dependent observability norms is

FK LJ1 0 1+0·5u2
1 +0·25v2

1 0
T

GG HH
1 0 −1+5·7695u2

2 +0·05769v2
2 0·4616u2v2GG HHO�=abs

0 1 0·5u1v1 1+0·75v2
1 .GG HH

0 1 0·1154u2v2 −1+0·2308u2
2 +0·1731v2

2fk lj

From these results, three observations can be made. From the controllability norms it
can be seen that any force applied to the structure will excite each mode with equal
magnitude. This result is identical to that for the linearized system, and thus the asymmetry
of the non-linearity does not effect how much of a given force will be applied to each mode.
From the observability norms it can be seen that for mode one a greater observability norm
occurs at position 2 for large oscillations than for small oscillations and that the converse
is true for the second mode. In fact, mode shape plots show that for high amplitude
oscillations, the modal motions tend towards becoming localized, thus changing the ability
to sense one mode as compared to the other as a function of amplitude.

10. CONCLUSION

The method of non-linear normal modes proposed by Shaw and Pierre has been
extended to the forced response case and now includes the output equation as well as
the state equation. The appropriate transformation have been derived and applied
to a two-degree-of-freedom non-linear oscillator, illustrating that observability and
controllability conditions can be established to assist in an eventual measurement and/or
control procedure for non-linear modes. In addition, several new definitions have been
proposed to allow non-linear mode theory to agree more precisely with the
non-conservative linearized case.
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NOMENCLATURE

q, r element of the specified matrix corre-
sponding to the qth row and the rth
column

q, R element of the specified matrix corre-
sponding to the qth row and the Rth
column

even even numbered rows of a non-square
matrix or even numbered rows and
columns of a square matrix

A	 (z) state functions
A	 i (z) ith element of A	 (z)
A(z) A	 (z)=A(z)z
A	 m (w) modal state functions
A	 mi (w) ith element of A	 m (w)
Am (w) A	 m (w)=Am (w)w
Amd (w) desired modal state matrix
Ãmd (w) desired modal state functions
a, b constants representing the linear re-

lationship between xi and yi

B usual state space 2N×N matrices
Bf N×N force matrix for the system in

linear second order form
Bfn normalized Bf

Bmn Bm normalized

Bmpn Bmp normalized
Bmp , Bm modal forcing matrix
Bmpq the qth row of the matrix Bmp

Cp output matrix for states
Cpm modal output matrix for states
Cpmn normalized modal output matrix for

states
Cv output matrix for the derivatives of

the states
C	 (z, ûz ) observation function in the physical

co-ordinates
C	 m (z, ûz ) observation function in modal co-or-

dinates
C�q,r controllability norm of the qth mode

from the rth actuator
f(t) arbitrary forcing function
F phase angle
Gz (z) modal control law function matrix
Gm (w) modal control law
Gp control feedback matrix for state

vector
Gv control feedback matrix for deriva-

tive of state vector
I identity matrix
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Iq identity matrix size Nq

m non-linear mode vector
im non-linear mode vector of ith mode
M(w) z=M(w)w
M	 (w) z=M	 (w)
M, D, K mass, damping and stiffness matrices
N(z) w=N(z)z
N	 (z) w=N	 (z)
NQ number of distinct natural frequencies
o�q,r observability norm of the qth mode

from the rth sensor
Pfp diagonal matrix of sensor sensitivities
Pn normalization matrix
S(w, ûz ) sensitivity of y to w
u, v modal co-ordinates
ui , vi ith modal displacement aid velocity
û force vector in physical co-ordinates
ûi ith element of û

ux̂ , uŷ , uẑ deflections in the x̂, ŷ, ẑ directions
ûm force vector in modal co-ordinates
ûz force vector in linear second order

form
w modal co-ordinate space
xi , yi displacement and velocity of the ith

degree of freedom, respectively
xc , yc chosen displacement and velocity

pair
x̂, ŷ, ẑ location of a point on a structure in

three-dimensional space
Xi , Yi functions which relate the displace-

ments xi , yi to the modal coordinates
u and v

Vi potential energy of the ith spring
ŷ output variable
ŷn normalized output variable
z physical co-ordinate space


